Model Tree Learning for Query Term Weighting in Question Answering

نویسنده

  • Christof Monz
چکیده

Question answering systems rely on retrieval components to identify documents that contain an answer to a user’s question. The formulation of queries that are used for retrieving those documents has a strong impact on the effectiveness of the retrieval component. Here, we focus on predicting the importance of terms from the original question. We use model tree machine learning techniques in order to assign weights to query terms according to their usefulness for identifying documents that contain an answer. Incorporating the learned weights into a state-of-the-art retrieval system results in statistically significant improvements.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Machine learning for query formulation in question answering

Research on question answering dates back to the 1960s but has more recently been revisited as part of TREC's evaluation campaigns, where question answering is addressed as a subarea of information retrieval that focuses on specific answers to a user's information need. Whereas document retrieval systems aim to return the documents that are most relevant to a user's query, question answering sy...

متن کامل

Complex Question Answering: Unsupervised Learning Approaches and Experiments

Complex questions that require inferencing and synthesizing information from multiple documents can be seen as a kind of topic-oriented, informative multi-document summarization where the goal is to produce a single text as a compressed version of a set of documents with a minimum loss of relevant information. In this paper, we experiment with one empirical method and two unsupervised statistic...

متن کامل

A Unified Query-based Generative Model for Question Generation and Question Answering

We propose a query-based generative model for solving both tasks of question generation (QG) and question answering (QA). The model follows the classic encoderdecoder framework. The encoder takes a passage and a query as input then performs query understanding by matching the query with the passage from multiple perspectives. The decoder is an attention-based Long Short Term Memory (LSTM) model...

متن کامل

Effective Term Weighting for Sentence Retrieval

A well-known challenge of information retrieval is how to infer a user’s underlying information need when the input query consists of only a few keywords. Question Answering (QA) systems face an equally important but opposite challenge: given a verbose question, how can the system infer the relative importance of terms in order to differentiate the core information need from supporting context?...

متن کامل

An Adaptive Context-Based Algorithm for Term Weighting: Application to Single-Word Question Answering

Term weighting systems are of crucial importance in Information Extraction and Information Retrieval applications. Common approaches to term weighting are based either on statistical or on natural language analysis. In this paper, we present a new algorithm that capitalizes from the advantages of both the strategies by adopting a machine learning approach. In the proposed method, the weights ar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007